## Integrating an initial value problem (multiple ODEs)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 | ```
# This code is an extension of http://scpyce.org/12/
import numpy as np
from scipy import integrate
from matplotlib.pylab import *
def tank(t, y):
"""
Dynamic balance for a CSTR
C_A = y[0] = the concentration of A in the tank, [mol/L]
T = y[1] = the tank temperature, [K]
Returns dy/dt = [F/V*(C_{A,in} - C_A) - k*C_A^2 ]
[F/V*(T_in - T) - k*C_A^2*HR/(rho*Cp) ]
"""
F = 20.1 # L/min
CA_in = 2.5 # mol/L
V = 100.0 # L
k0 = 0.15 # L/(mol.min)
Ea = 5000 # J/mol
R = 8.314 # J/(mol.K)
Hr = -590 # J/mol
T_in = 288 # K
rho = 1.050 # kg/L
# Assign some variables for convenience of notation
CA = y[0]
T = y[1]
# Algebraic equations
k = k0 * np.exp(-Ea/(R*T)) # L/(mol.min)
Cp = 4.184 - 0.002*(T-273) # J/(kg.K)
# Output from ODE function must be a COLUMN vector, with n rows
n = len(y) # 2: implies we have two ODEs
dydt = np.zeros((n,1))
dydt[0] = F/V*(CA_in - CA) - k*CA**2
dydt[1] = F/V*(T_in - T) - (Hr*k*CA**2)/(rho*Cp)
return dydt
# The "driver" that will integrate the ODE(s):
# -----------
# Start by specifying the integrator:
# use ``vode`` with "backward differentiation formula"
r = integrate.ode(tank).set_integrator('vode', method='bdf')
# Set the time range
t_start = 0.0
t_final = 45.0
delta_t = 0.1
# Number of time steps: 1 extra for initial condition
num_steps = np.floor((t_final - t_start)/delta_t) + 1
# Set initial condition(s): for integrating variable and time!
CA_t_zero = 0.5
T_t_zero = 295.0
r.set_initial_value([CA_t_zero, T_t_zero], t_start)
# Additional Python step: create vectors to store trajectories
t = np.zeros((num_steps, 1))
CA = np.zeros((num_steps, 1))
temp = np.zeros((num_steps, 1))
t[0] = t_start
CA[0] = CA_t_zero
temp[0] = T_t_zero
# Integrate the ODE(s) across each delta_t timestep
k = 1
while r.successful() and k < num_steps:
r.integrate(r.t + delta_t)
# Store the results to plot later
t[k] = r.t
CA[k] = r.y[0]
temp[k] = r.y[1]
k += 1
# All done! Plot the trajectories in two separate plots:
fig = figure()
ax1 = subplot(211)
ax1.plot(t, CA)
ax1.set_xlim(t_start, t_final)
ax1.set_xlabel('Time [minutes]')
ax1.set_ylabel('Concentration [mol/L]')
ax1.grid('on')
ax2 = plt.subplot(212)
ax2.plot(t, temp, 'r')
ax2.set_xlim(t_start, t_final)
ax2.set_xlabel('Time [minutes]')
ax2.set_ylabel('Temperaturere [K]')
ax2.grid('on')
fig.savefig('coupled-ode-plot.png')
``` |

*No rights reserved*.

Users have permission to do anything with the code and other material on this page. (More details)

We extend the example from http://scpyce.org/12/ here to integrate 2 coupled ODEs and include several algebraic equations.

Consider a chemical reactor with a second order reaction \({\sf A} \rightarrow {\sf B}\). Our aim is calculate the concentration, \(C_{\sf A}(t)\), and tank temperature, \(T(t)\), as functions of time using an ODE integrator.

We know the reaction rate is \(r = k C_{\sf A}^2\), and is an algebraic function of temperature: \(k = 0.15 e^{- E_a/(RT)}\) L/(mol.min). Furthermore, the reaction is known to release heat, with \(\Delta H_r = -590\) J/mol. The time-dependent mass and energy balance for this system can be derived:

Notice that these are coupled ODEs, as the first ODE is a function of \(T(t)\), while the second ODE is a function of \(C_{\sf A}(t)\). We also know that:

- \(C_{{\sf A},\text{in}} = 2.5\) mol/L,
- \(T_\text{in} = 288\) K
- a constant volume of \(V = 100\) L
- constant inlet flow of \(F(t) = 20.1\) L/min, though we could easily make it a function of time and adjust the function
`tank`to use the time variable,`t` - molar heat capacity is a weak function of the system temperature: \(C_p(T) = 4.184 - 0.002(T-273)\) J/(kg.K),
- liquid phase density is \(\rho=1.05\) kg/L.
- \(E_a = 5000\) J/mol
- \(R = 8.314\) J/(mol.K),

We need two initial conditions, one for each of the ODEs:

- \(C_{\sf A}(t=0) = 0.5\) mol/L
- \(T(t=0) = 295\) K

In the code we will integrate the ODE from \(t_\text{start} = 0.0\) minutes up to \(t_\text{final} = 45.0\) minutes
and plot the time-varying trajectories of temperature and concentration in the tank using `matplotlib`.

Read the SciPy documentation for `ode`.

Page views: 90 (past 60 days)

Identifier #: **13**

Permalink to this revision: http://scpyce.org/13/2/

Permalink to latest revision: http://scpyce.org/13/